Multiobjective Classification Rule Mining
نویسندگان
چکیده
In this chapter, we discuss the application of evolutionary multiobjective optimization (EMO) to association rule mining. Especially, we focus our attention on classification rule mining in a continuous feature space where the antecedent and consequent parts of each rule are an interval vector and a class label, respectively. First we explain evolutionary multiobjective classification rule mining techniques. Those techniques are roughly categorized into two approaches. In one approach, each classification rule is handled as an individual. An EMO algorithm is used to search for Pareto-optimal rules with respect to some rule evaluation criteria such as support and confidence. In the other approach, each rule set is handled as an individual. An EMO algorithm is used to search for Pareto-optimal rule sets with respect to some rule set evaluation criteria such as accuracy and complexity. Next we explain evolutionary multiobjective rule selection as a post-processing procedure in classification rule mining. Pareto-optimal rule sets are found from a large number of candidate classification rules, which are extracted from a database using an association rule mining technique. Then we examine the effectiveness of evolutionary multiobjective rule selection through computational experiments on some benchmark classification problems. Finally we examine the use of Pareto-optimal and near Pareto-optimal rules as candidate rules in evolutionary multiobjective rule selection.
منابع مشابه
Revisiting evolutionary algorithms in feature selection and nonfuzzy/fuzzy rule based classification
This paper discusses the relevance and possible applications of evolutionary algorithms, particularly genetic algorithms, in the domain of knowledge discovery in databases. Knowledge discovery in databases is a process of discovering knowledge along with its validity, novelty, and potentiality. Various genetic-based feature selection algorithms with their pros and cons are discussed in this art...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملData mining for decision making in engineering optimal design
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the numerical analyses are considerably time consuming to obtain the final value of objective functi...
متن کامل